Day 3
Independence Day
by Laura Ingalls Wilder

1 Father was a little way down the street, talking to Mr. Paddock, the wagonmaker. Almanzo walked slowly toward them. The nearer he got to Father, the more he dreaded asking for a nickel. He was sure Father would not give it to him.
2 He waited till Father stopped talking and looked at him.
3 “What is it, son?” Father asked.
4 Almanzo was scared.
5 “Father,” Almanzo said, “would you—would you give me—a nickel?”
6 He stood there while Father and Mr. Paddock looked at him, and he wished he could get away. Finally Father asked:
7 “What for?”
8 Almanzo looked down at his moccasins and muttered:
9 “Frank had a nickel. He bought pink lemonade.”
10 Father looked at him a long time. Then he took out his wallet and opened it, and slowly he took out a round, big silver half-dollar. He asked:
11 “Almanzo, do you know what this is?”
12 “Half a dollar,” Almanzo answered.
13 “Yes. But do you know what half a dollar is?”
14 Almanzo didn’t know it was anything but half a dollar.
15 “It’s work, son,” Father said. “That’s what money is; it’s hard work.”
16 Mr. Paddock chuckled. “The boy’s too young, Wilder,” he said. “You can’t make a youngster understand that.”
17 “Almanzo’s smarter than you think,” said Father.
18 Almanzo didn’t understand at all. But Father had said that Almanzo was smart, so Almanzo tried to look like a smart boy. Father asked:
19 “You know how to raise potatoes, Almanzo?”
20 “Yes,” Almanzo said.
21 "Say you have a seed potato in the spring, what do you do with it?"
22 “You cut it up,” Almanzo said.
23 “Go on, son.”
24 “Then you harrow—first you manure the field, and plow it. Then you harrow, and mark the ground. And plant the potatoes, and plow them.”
25 “That’s right, son. And then?”
26 “Then you dig them and put them down cellar.”
“Yes. Then you pick them over all winter; you throw out all the little ones and the rotten ones. Come spring, you sell them. And if you get a good price son, how much do you get to show for all that work? How much do you get for half a bushel of potatoes?”

“Half a dollar,” Almanzo said.

“Yes,” said Father. “That’s what’s in this half-dollar, Almanzo. The work that raised half a bushel of potatoes is in it.”

Almanzo looked at the round piece of money that Father held up. It looked small, compared with all that work.

“You can have it, Almanzo,” Father said. Almanzo could hardly believe his ears. Father gave him the heavy half-dollar.

“It’s yours,” said Father. “You could buy a pig with it, if you want to. You could raise it, and it would raise a litter of pigs, worth four, five dollars apiece. Or you can trade that half dollar for lemonade, and drink it up. You do as you want, it’s your money.”

Almanzo forgot to say thank you. He held the half-dollar a minute, then he put his hand in his pocket and went back to the boys by the lemonade-stand.

Frank asked Almanzo:

“Where’s the nickel?”

“He didn’t give me a nickel,” said Almanzo, and Frank yelled:

“Yah, yah! I told you he wouldn’t. I told you so!”

“He gave me half a dollar,” said Almanzo.

The boys wouldn’t believe it till he showed them. Then they crowded around, waiting for him to spend it. He showed it to them all, and put it back in his pocket.

“I’m going to look around,” he said, “and buy me a good little pig.”
14. What is Almanzo doing before he comes to talk to his father?

A talking with Frank and the other boys
B drinking lemonade with Frank
C listening to his father and Mr. Paddock
D trying to find a small pig to buy

15. "The nearer he got to Father, the more he **dreaded** asking for a nickel. He was sure Father would not give it to him."

What does **dreaded** mean in these sentences?

A feared
B questioned
C avoided
D debated
16. Why does Father give Almanzo the half-dollar? Write one detail or example from the selection that supports your answer.

__

__

__

__

__

__

17. How does Frank respond when Almanzo says he did not get a nickel from his father?

A He goes and talks to Almanzo's father. C He laughs and makes fun of Almanzo.

B He smiles and brings Almanzo lemonade. D He drinks lemonade in front of Almanzo.
18. "I'm going to look around,' he said, 'and buy me a good little pig.' "
Give two reasons Almanzo says this at the end of the selection.

__
__
__
__
__

19. What is the theme of this selection?

A. Raising potatoes is hard work.
B. Money represents hard work.
C. Asking a parent for money can be scary.
D. Children are often smarter than adults think.
Amber: The Forty-Million-Year-Old Trap

by Marjorie Jackson

1. Forty million years ago, when the earth was much wetter and warmer, huge forests with many kinds of trees thrived in the far north. Out of some of these trees, stretching as tall as ten-story buildings, oozed a sticky resin. Mosquitoes buzzed through the forests, grasshoppers and crickets leaped, and ants and spiders scurried by the trees in search of food. If they carelessly let a leg or wing touch the resin—zap!—they were stuck.

2. Millions of years passed, and the climate of the earth altered dramatically. The northlands turned cold and icy. The giant trees fell, buried under the salt water that now covered the land. Far beneath the water, the globbs of resin slowly changed, hardening into solid, glowing pieces of amber.

3. Still millions of years later, storms at sea broke the amber free and tossed it onto beaches for early cave dwellers to find. The cave dwellers wondered if the strange golden stone, warm to the touch, could be solid sunlight. Using flint and bone tools, they carved pieces of amber into the shapes of animals or the sun and wore them on cords around their necks for protection.

4. For hundreds of years, people used amber in jewelry or to decorate warriors’ weapons; some soldiers braided amber beads in their horses’ manes to ensure success in battle. Amber was also ground fine and mixed with honey, oil of roses, and crabs’ eyes or claws for use as medicine. Amber mixtures were believed to cure earaches, headaches, and any number of diseases. Even wearing buttons or beads carved from amber was thought to keep a person well.

5. In the early 1700s, King Frederick I of Prussia had an entire room built from 100,000 pieces of amber of many colors—yellow, orange, red, brown, and even blue and green—all fitted together like a giant jigsaw puzzle. When the sun shone through the windows, nobles said, they felt as if they were standing inside a jewel box. The room was used and admired for more than 200 years, but in the 1940s, during World War II, it was taken apart and loaded into boxes for storage in a safer place. The boxes were somehow lost, and where the amber room is today remains a mystery.

6. Some of the oldest pieces of amber are mined in Appalachia, in the eastern United States. The Baltic seacoast also has large deposits. But the Dominican Republic, in the Caribbean, yields the most pieces with insects, leaves, feathers, and other remains of life.

7. Some pieces of amber have air bubbles inside that keep the light from passing through, making it look cloudy, but many others are clear like glass.
The pieces of amber with inclusions of early life or gas bubbles are the most valuable to scientists. They hold clues about the earth’s ecology millions of years ago and enable scientists to compare early life forms with today’s. More than a thousand kinds of insects have been found preserved in amber, from prehistoric flies that proved to be the ancestors of our houseflies to a 140-million-year-old weevil that lived at the time of the dinosaurs. Whole flights of insects were sometimes trapped in one glob of resin; one two-inch piece of amber has 2,000 ants in it! Although most of the preserved insects are now extinct, their descendants may still survive, sometimes in new places. A termite found in Mexican amber now lives only in Australia.

Many natural history museums have pieces of amber on display. Look for them during your next visit. These golden traps, 40 or more millions of years old, are the closest thing we have to snapshots of our ancient past.

Word Bank:

climate the usual weather conditions in a particular region

descendants people or animals coming directly from an earlier, usually similar, type or individual

ecology environment or habitat

nobles people of high rank or birth

resin a sap-like substance that some trees make to protect themselves when cut
12. Which statement summarizes the main idea of the selection?

A Amber can be made into beautiful jewelry for people to admire.
B Many things can be learned about our ancient past by studying amber.
C The earth has changed in many ways over millions of years.
D It is important to keep pieces of amber in museums.

13. "Forty million years ago, when the earth was much wetter and warmer, huge forests with many kinds of trees **thrived** in the far north."
What does the word **thrived** mean in the sentence?

A became shorter
B died quickly
C grew well
D burned down
14. Use details from the selection to summarize how people used amber.

15. What caused amber to form?

A Resin was mixed together with honey and oil.

B The climate of the earth became warmer.

C Giant trees were buried under saltwater.

D Air bubbles hardened into clear glass.
16. How did insects get captured in amber?

A The insects touched the resin.
B The insects searched for food.
C The insects were buried under water.
D The insects oozed a sticky resin.

17. What did early cave dwellers think amber might be?

A buried trees
B preserved insects
C solid sunlight
D sticky resin
18. What type of amber is most valuable to scientists? Why? Support your answer with details from the text.

19. "Millions of years passed, and the climate of the earth altered dramatically. The northlands turned cold and icy."
What does altered mean in the sentence?

A jumped C stopped
B raised D changed
Study the example problem showing one way to multiply whole numbers using partial products. Then solve problems 1–6.

Example

There are 325 stickers in one package. How many stickers are in 60 packages?

\[
325 \times 60 = ?
\]

\[
\begin{array}{c}
325 \\
\times \ 60 \\
\hline
300 & \rightarrow & 6 \text{ tens} \times 5 \text{ ones} \\
1,200 & \rightarrow & 6 \text{ tens} \times 2 \text{ tens} \\
+ 18,000 & \rightarrow & 6 \text{ tens} \times 3 \text{ hundreds} \\
\hline
19,500 \\
\end{array}
\]

\[
325 \times 60 = 19,500 \quad \text{There are 19,500 stickers in 60 packages.}
\]

1. Look at the example problem. How would the partial products and the sum of the partial products change if there were 6 packages instead of 60? Explain.

2. Complete the steps to find the product.

\[
325 \\
\times \ 6 \\
\hline
\boxed{} & (6 \times 5) \\
\boxed{} & (_ \times _ _ _ _ _) \\
\hline
\boxed{} & (_ \times _ _ _ _ _ _ _) \\
\boxed{} \\
\]
Solve.

3 Show how to find 42×27 using an area model.
 a. Write the missing equations in the model.
 b. Use the information from the model to complete the equation.

 \[42 \times 27 = _ + _ + _ + _ = _ \]

4 Is your answer to problem 3 reasonable? Explain your thinking.

A pet-supply store sells dog biscuits and cat treats. The store has 27 boxes of dog biscuits and 21 pouches of cat treats. Each box holds 18 dog biscuits. Each pouch holds 24 cat treats. Are there more dog biscuits or cat treats in the store?

Show your work.

Solution: ________________________________

6 Look at problem 5. How many more boxes of dog biscuits do you need in order for there to be more dog biscuits than cat treats? Explain.

Lesson 8

Multiply Decimals by Whole Numbers

Study the example showing multiplying a decimal by a whole number using partial products. Then solve problems 1–7.

Example

\[3.17 \times 4 = \ ? \]
Estimate: \(3 \times 4 = 12\)

\[
\begin{array}{c}
3.17 \\
\times \ 4 \\
\end{array}
\]

\[
\begin{array}{c}
28 \leftarrow 4 \text{ ones} \times 7 \text{ hundredths} \\
40 \leftarrow 4 \text{ ones} \times 1 \text{ tenth} = 4 \text{ tenths} \\
+ 1,200 \leftarrow 4 \text{ ones} \times 3 \text{ ones} = 12 \text{ ones} \\
\hline
1,268 \text{ hundredths} = 12.68
\end{array}
\]

1. Look at the example. Compare the product with the estimate. Is it reasonable that the product is greater than the estimate? Explain.

__

__

__

2. Complete the steps to find the product.

\[
0.35 \\
\times \ 3
\]

\[
\begin{array}{c}
\underline{\ 3 \text{ ones} \times \underline{ \ 3 \text{ hundredths} = \underline{ \ 3 \text{ hundredths} }} \\
+ \underline{ \ 3 \text{ ones} \times \underline{ \ 3 \text{ tenths} = \underline{ \ 3 \text{ tenths} = \underline{ \ 3 \text{ hundredths} } }} \\
\hline
\end{array}
\]

3. Look at problem 2. Why wasn’t the zero in the ones place included as a partial product?

__

__

__
Solve.

4 Write the decimal point in each product so that the equation is correct.
 a. $6 \times 8.29 = \underline{4974}$
 b. $0.53 \times 5 = \underline{265}$
 c. $9.72 \times 7 = \underline{6804}$
 d. $3.18 \times 16 = \underline{5088}$

5 Explain how you decided where to place the decimal points in the products in problem 4.

6 Complete the steps to find 3.18×16.

 \[
 \begin{array}{c c c}
 & 3.18 & 3.18 \\
 \times & 10 & \times 6 \\
 \hline
 & 80 & \\
 \hline
 + & & \\
 \hline
 & & \\
 \end{array}
 \]

 $3.18 \times 16 = \underline{_______}$ hundredths $+$ $\underline{_______}$ hundredths

 $= \underline{_______}$ hundredths $= \underline{_______}$

7 In the city where Sonya lives it rained an average of 4.05 inches each month last year. About how many inches of rain fell in all?

 Show your work.

 Solution: ________________________________
Multiply With an Area Model

Study the example showing multiplying a decimal by a decimal using an area model. Then solve problems 1–5.

Example
Find 1.3×0.6.

\[
\begin{array}{c|c}
0.6 & \hline \\
1 & 0.3 \\
\end{array}
\]

\[
\begin{array}{c|c}
1 & 0.6 = 0.6 \\
0.3 & 0.6 = 0.18 \\
\end{array}
\]

$1.3 \times 0.6 = 0.6 + 0.18 = 0.78$

1. Complete the area model. Find the product of 2.3×1.5.

\[
\begin{array}{c|c}
1 & 0.5 \\
\hline \\
2 \times 1 = 2 & \\
\end{array}
\]

$2.3 \times 1.5 = \underline{3.45}$

2. How would the area model in problem 1 need to change if the factor 2.3 was changed to 12.3?

__

__

__

__

__
Solve.

3 Halen wrote the product 0.4 for the problem shown. Don says that is not correct since when you multiply tenths by tenths the product will be in the hundredths. Is Don right? Explain.

\[0.5 \times 0.8 = ? \]

4 Use numbers from the box to complete the equations.
 a. \(0.5 \times 0.4 = \) ______
 b. \(0.5 \times 4 = \) ______
 c. \(0.2 \times 0.5 = \) ______
 d. \(2 \times 0.5 = \) ______

 \[
 \begin{array}{ccc}
 0.01 & 0.1 & 1 \\
 0.02 & 0.2 & 2 \\
 \end{array}
 \]

5 The Barga school grows lettuce and other vegetables for school lunches. The school garden is 8.4 meters long and 6.4 meters wide. The section used to grow lettuce is 2.2 meters long and 0.8 meter wide. How many square meters of ground does the garden cover? How many square meters of the garden is used to grow lettuce?

Show your work.

Solution: The garden covers ________ square meters of ground and ________ square meters of the garden is used to grow lettuce.
Multiply Decimals

Solve the problems.

1. Fabiola’s basketball team practices 4.25 hours each week. The basketball season is 14 weeks long. How much time does Fabiola spend in practice during the season?

 Show your work.

 Solution: __________________________

2. The model represents the expression 0.7×0.3. Choose the product.

 A 0.21 C 0.30
 B 2.1 D 0.03

 Val chose C as the correct answer. How did she get that answer?

3. Find the product of 0.6×0.6.

 A 30.6 C 3.06
 B 3.6 D 0.36

 Will the product be in tenths or hundredths?
4. One pound of red grapes costs $2.42. Ella buys 0.5 pound. How much does she spend on red grapes?

Show your work.

Solution: ________________________________

5. Terry lives 0.9 kilometer from school. He walks back and forth to school each day. How many kilometers does he walk to and from school each week?

Show your work.

Solution: ________________________________
Think about a change you would like to see made at Brilla Middle School. Write a letter to Mr. Larsen in order to persuade him to make that change. In your letter be sure to:

- State the change you want to make
- Explain why you want this change
- Explain how it would impact the school
Lesson 12
Revising Sentences

Introduction Good writers revise their writing to make sure their ideas grab and hold a reader's attention. There are many ways to revise sentences to improve them.

- You can **expand** a sentence by adding details that make the sentence more interesting.

| Add Details | **Weak:** Hula is a beautiful Hawaiian dance. | **Better:** With its pulsing drums and flowing steps, hula is a beautiful Hawaiian dance. |

- You can **shorten** a sentence by deleting unnecessary words or cutting repetition. Short sentences get to the point. They also create rhythm when mixed with longer sentences.

| Delete Words | **Weak:** I'll start by saying that I think the dancers move like swaying palm trees. | **Better:** The dancers move like swaying palm trees. |
| | **Weak:** Hula is fairly simple and not difficult because it is a dance based on just six basic moves that dancers do. | **Better:** Hula is fairly simple because it is based on just six moves. |

Guided Practice Improve each sentence by adding details, deleting words, or avoiding repetition. If you need to add details, use facts from the tables above.

1. Hula is a dance.

2. Now I will tell you that hula is not just for women, but in fact men also dance hula, too.

3. Modern hula today includes stringed instruments like the ukulele, guitar, and other stringed instruments that are also used in addition to traditional instruments like rattles and gourds.
Independent Practice

For numbers 1–4, choose the best way to revise the sentence.

1. Hula dancers often wear things they find in nature.
 A. Hula dancers wear costumes.
 B. Hula dancers wear natural things.
 C. Hula dancers often wear headbands and bracelets made of leaves.
 D. Hula dancers often wear things from nature such as natural leaves.

2. Some types involve chanting.
 A. Chanting is in some types.
 B. Chanting is an important part of some types of hula.
 C. When hula dancers dance the hula, sometimes they chant as they dance.
 D. Sometimes people chant during the hula when they do certain types of hula.

3. Queen Lili‘uokalani wrote lots of songs, and one song she wrote was the famous song called “Aloha Oe.”
 A. Queen Lili‘uokalani wrote many songs, including the famous “Aloha Oe.”
 B. Queen Lili‘uokalani wrote “Aloha Oe.”
 C. Queen Lili‘uokalani wrote songs, and she wrote “Aloha Oe,” a famous song.
 D. Queen Lili‘uokalani wrote songs, and one she wrote was famous.

4. Hula means more than entertainment for tourists, and this meaning is the celebration of Hawaiian history.
 A. Hula’s meaning is the celebration of Hawaiian history, not only just entertainment.
 B. Hula entertains tourists and it also means the celebration of Hawaiian history.
 C. In addition to entertaining tourists, hula has a lot of meaning.
 D. More than just entertainment, hula is the celebration of Hawaiian history.
Wednesday: Science

1. The sunrise and sunset times for five days in April are recorded in the chart below.

Sunrise & Sunset Times in April

<table>
<thead>
<tr>
<th>Day</th>
<th>Sunrise</th>
<th>Sunset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>6:45 AM</td>
<td>7:30 PM</td>
</tr>
<tr>
<td>Tuesday</td>
<td>6:47 AM</td>
<td>7:28 PM</td>
</tr>
<tr>
<td>Wednesday</td>
<td>6:49 AM</td>
<td>7:26 PM</td>
</tr>
<tr>
<td>Thursday</td>
<td>6:51 AM</td>
<td>7:24 PM</td>
</tr>
<tr>
<td>Friday</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

If the pattern above continued, what would be the sunrise and sunset times on Friday?

Sunrise: ____________

Sunset: ____________

2. Below is a chart that lists all of the animals observed in a forest habitat.

Animals Observed

<table>
<thead>
<tr>
<th>Animals in Water</th>
<th>Animals on Land</th>
<th>Animals in Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmon</td>
<td>Bear</td>
<td>Cardinal</td>
</tr>
<tr>
<td>Turtle</td>
<td>Deer</td>
<td>Blue Jay</td>
</tr>
<tr>
<td></td>
<td>Snake</td>
<td>Crow</td>
</tr>
<tr>
<td></td>
<td>Cricket</td>
<td>Hawk</td>
</tr>
</tbody>
</table>

Use the information about the animals to create a tally chart.

<table>
<thead>
<tr>
<th>Water</th>
<th>Land</th>
<th>Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. A group of fourth graders recorded their hair color. The tallies in the table below show their results.

<table>
<thead>
<tr>
<th>Hair Color</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td></td>
</tr>
<tr>
<td>Blonde</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td></td>
</tr>
</tbody>
</table>

A. Which hair color was most common in this group of students?

B. Use the results in the data table to complete the bar graph below:
Roman Numerals
Maths worksheets from mathsphere.co.uk

We didn't use numbers like you when counting and doing maths. We used capital letters, which made it much harder!

The Romans used these capital letters:

<table>
<thead>
<tr>
<th>I</th>
<th>V</th>
<th>X</th>
<th>L</th>
<th>C</th>
<th>D</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>

These letters were put together to form all the numbers, like this:

I = 1 II = 2 III = 3 IV = 4 V = 5
VI = 6 VII = 7 VIII = 8 IX = 9

There are two rules you need to know:
1. put a letter after a larger one means you add it.
2. put a letter before a larger one means you take it away.

So XI is 10 + 1 = 11 and IX is 10 - 1 = 9

CX is 100 + 10 = 110 and XC is 100 - 10 = 90

Work out what numbers these Roman numerals represent:

1. VIII = 2. IV = 3. XII = 4. XV =
5. LX = 6. XL = 7. XIV = 8. XVII =

Write these numbers in Roman numerals:

9. 13 = 10. 22 = 11. 30 = 12. 49 =

Page 2